Search results for "Big Bang nucleosynthesis"
showing 10 items of 34 documents
Big-bang nucleosynthesis and the relic abundance of dark matter in a stau-neutralino coannihilation scenario
2008
A scenario of the Big-Bang Nucleosynthesis is analyzed within the Minimal Supersymmetric Standard Model which is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. We find that we can account for the possible descrepancy of the abundance of $\mathrm{^{7}Li}$ between the observation and the prediction of the Big-Bang Nucleosynthesis by taking the mass of the neutralino as $300 \mathrm{GeV}$ and the mass difference between the stau and the neutralino as $(100 -- 120) MeV$. We can therefore simultaneously explain the abundance of the dark matter and that of $\mathrm{^{7}Li}$ by these values of parameters. The lifetime of staus in this scena…
A CMB search for the neutrino mass mechanism and its relation to the Hubble tension
2020
AbstractThe majoron, a pseudo-Goldstone boson arising from the spontaneous breaking of global lepton number, is a generic feature of many models intended to explain the origin of the small neutrino masses. In this work, we investigate potential imprints in the cosmic microwave background (CMB) arising from massive majorons, should they thermalize with neutrinos after Big Bang Nucleosynthesis via inverse neutrino decays. We show that measurements of the CMB are currently sensitive to neutrino-majoron couplings as small as $$\lambda \sim 10^{-13}$$λ∼10-13, which if interpreted in the context of the type-I seesaw mechanism correspond to a lepton number symmetry breaking scale $$v_L \sim {\math…
7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN
2017
One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…
Review of Particle Physics
2020
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, …
Unstable massive tau-neutrinos and primordial nucleosynthesis
1998
The impact of unstable Majorana tau neutrinos on primordial nucleosynthesis is considered. The mass and lifetime of nu_tau are taken in the intervals 0.1-20 MeV and 0.001-400 sec respectively. The studied decay modes are nu_tau -> nu_mu + phi and nu_tau -> nu_e + phi, where phi is a massless (or light) scalar. Integro-differential kinetic equations are solved numerically without any simplifying assumptions. Our results deviate rather strongly from earlier calculations. Depending on mass, lifetime, and decay channels of the nu_tau, the number of effective neutrino species (found from He4), in addition to the 3 standard ones, varies from -2 to +2.5. The abundances of H2 and Li7 are also…
The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe
2020
It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves,…
Cosmological bounds on neutrino statistics
2018
We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can …
New Methods of Scalar Dark Matter Detection
2017
In this chapter, I consider new mechanisms for the induction of a cosmological evolution of the fundamental constants (such as the electromagnetic fine-structure constant \(\alpha \) and the particle masses) by dark matter. By investigating the effects of “slow drifts” and oscillating variations of the fundamental constants due to dark matter in astrophysical phenomena, including Big Bang nucleosynthesis and cosmic microwave background radiation measurements, and laboratory clock-comparison experiments, I derive new limits on certain interactions of dark matter with ordinary matter that improve on previous limits by up to 15 orders of magnitude, as well as the first ever limits on several o…
Search for heavy neutrinos mixing with tau neutrinos
2001
We report on a search for heavy neutrinos ($\nus$) produced in the decay $D_s\to \tau \nus$ at the SPS proton target followed by the decay $\nudecay$ in the NOMAD detector. Both decays are expected to occur if $\nus$ is a component of $\nu_{\tau}$.\ From the analysis of the data collected during the 1996-1998 runs with $4.1\times10^{19}$ protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the $\nus$ mass range from 10 to 190 $\rm MeV$. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for f…
Constraints on massive sterile neutrino species from current and future cosmological data
2011
Sterile massive neutrinos are a natural extension of the Standard Model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states as well as on the number of sterile states. The so-called (3+2) models with three sub-eV active massive neutrinos plus two sub-eV massive sterile species is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, Big Bang Nucle…